

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2006-223873
(P2006-223873A)

(43) 公開日 平成18年8月31日(2006.8.31)

(51) Int.CI.

A61B 1/04
G02B 23/24(2006.01)
(2006.01)

F 1

A 61 B 1/04
G 02 B 23/24360 E
A

テーマコード(参考)

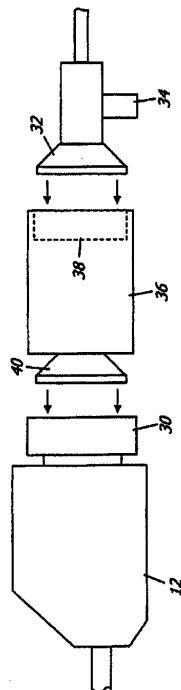
2 H 04 0
4 C 06 1

審査請求 有 請求項の数 33 O L 外国語出願 (全 50 頁)

(21) 出願番号 特願2006-41378 (P2006-41378)
 (22) 出願日 平成18年2月17日 (2006.2.17)
 (31) 優先権主張番号 60/653,927
 (32) 優先日 平成17年2月17日 (2005.2.17)
 (33) 優先権主張国 米国(US)
 (31) 優先権主張番号 11/355,345
 (32) 優先日 平成18年2月16日 (2006.2.16)
 (33) 優先権主張国 米国(US)

(71) 出願人 505414986
 カール・ストーツ・デベロップメント・コ
 ーポレーション
 アメリカ合衆国・カリフォルニア・931
 17・ゴレタ・クリモナ・ドライブ・17
 5 B
 (74) 代理人 100064908
 弁理士 志賀 正武
 (74) 代理人 100089037
 弁理士 渡邊 隆
 (74) 代理人 100108453
 弁理士 村山 靖彦
 (74) 代理人 100110364
 弁理士 実広 信哉

最終頁に続く


(54) 【発明の名称】画像配向機能付き連結アセンブリ

(57) 【要約】

【課題】スコープの向きを正確に観測し得るような、スコープによって取得された画像を配向させるためのアセンブリを提供すること。

【解決手段】スコープと画像センサハウジングとを連結するための連結アセンブリであって、画像配向ユニット(36)と；回転可能な光学部材を備えている、光学的アセンブリと；回転センサと；加速度計と；回転センサと加速度計とに対して接続され、かつ、第1信号および第2信号を受領するとともに、第1信号および第2信号の少なくとも一部に基づき、重力方向に対しての画像の配向性を計算するプロセッサと；を具備している。

【選択図】図2A

【特許請求の範囲】

【請求項 1】

スコープと画像センサハウジングとを連結するための連結アセンブリであって、

第1端部および第2端部を有している画像配向ユニットであるとともに、前記第1端部のところに位置しつつ前記画像配向ユニットとスコープとを連結するための第1連結部分と、前記第2端部のところに位置しつつ前記画像配向ユニットと画像センサハウジングとを連結するための第2連結部分と、を備えている画像配向ユニットと；

少なくとも一部が前記画像配向ユニット内に収容されているとともに、内部を通して画像を伝達するための光学的アセンブリであり、光学的画像を回転させるための少なくとも1つの回転可能な光学部材を備えている、光学的アセンブリと；

前記光学部材の回転を観測するとともに、前記光学部材を回転させるための第1信号を生成する回転センサと；

前記画像配向ユニット内に配置され、かつ、前記画像配向ユニットの回転を観測するとともに前記画像配向ユニットを回転させるための第2信号を生成する加速度計と；

前記回転センサと前記加速度計とに対して接続され、かつ、前記第1信号および前記第2信号を受領するとともに、前記第1信号および前記第2信号の少なくとも一部に基づき、重力方向に対しての画像の配向性を計算するプロセッサと；

を具備していることを特徴とするアセンブリ。

【請求項 2】

請求項1記載のアセンブリにおいて、

さらに、前記光学部材を回転させるためのアクチュエータを具備し、

このアクチュエータが、前記プロセッサに対して接続されていて、前記プロセッサから、画像を水平化するために必要とされる前記光学部材の回転量を表す信号を受領し得るものとされていることを特徴とするアセンブリ。

【請求項 3】

請求項2記載のアセンブリにおいて、

前記アクチュエータが、モータを備え、

さらに、

前記光学部材の少なくとも一部を収容する光学部材ハウジングと；

前記モータに対して連結されかつ前記モータによって回転駆動され得るものとされた第1ギヤと；

前記第1ギヤによって回転駆動され得るものとされた第2ギヤであるとともに、前記光学部材ハウジングに対して連結され、これにより、前記第2ギヤの回転駆動によって前記光学部材を回転駆動し得るものとされた、第2ギヤと；
を具備していることを特徴とするアセンブリ。

【請求項 4】

請求項2記載のアセンブリにおいて、

さらに、前記光学部材の少なくとも一部を収容する光学部材ハウジングを具備し、

前記画像配向ユニットが、メインハウジングを備え、

前記画像配向ユニットの前記第2連結部分が、前記メインハウジングに対して回転するものとされた回転可能部材を備え、

前記光学部材ハウジングが、前記回転可能部材に対して連結され、これにより、前記光学部材が、前記メインハウジングに対して、前記回転可能部材と一緒に回転するものとされ、

前記アクチュエータが、モータを備え、

さらに、このモータによって駆動される差動ギヤセットを具備し、

この差動ギヤセットが、前記光学部材ハウジングに対して連結され、これにより、前記光学部材が、前記差動ギヤセットによって回転駆動され得るものとされていることを特徴とするアセンブリ。

【請求項 5】

10

20

30

40

50

請求項 1 記載のアセンブリにおいて、
前記光学的アセンブリが、回転可能な第2光学部材を備え、
さらに、前記第2光学部材の回転を観測するとともに、前記第2光学部材を回転させるための第3信号を生成する第2回転センサを具備し、
前記プロセッサが、前記第2回転センサに対して接続されていて、前記第3信号を受領するとともにこの第3信号を使用することによって、重力方向に対しての画像の配向性を計算し得るものとされていることを特徴とするアセンブリ。

【請求項 6】

請求項 1 記載のアセンブリにおいて、
さらに、前記光学的アセンブリを回転させるためのアクチュエータを具備し、
このアクチュエータが、前記プロセッサに対して接続されていて、前記プロセッサから、画像を水平化するために必要とされる前記光学的アセンブリの回転量を表す信号を受領し得るものとされ、
前記画像配向ユニットが、メインハウジングを備え、
前記画像配向ユニットの前記第2連結部分が、前記メインハウジングに対して回転するものとされた回転可能部材を備え、
前記光学的アセンブリが、前記回転可能部材に対して連結され、これにより、前記光学的アセンブリが、前記メインハウジングに対して、前記回転可能部材と一緒に回転するものとされていることを特徴とするアセンブリ。

【請求項 7】

請求項 1 記載のアセンブリにおいて、
前記光学部材が、ダブプリズムを備えていることを特徴とするアセンブリ。

【請求項 8】

請求項 1 記載のアセンブリにおいて、
前記光学部材が、Kプリズムを備えていることを特徴とするアセンブリ。

【請求項 9】

請求項 1 記載のアセンブリにおいて、
前記光学的アセンブリが、さらに、画像反転部材を備えていることを特徴とするアセンブリ。

【請求項 10】

請求項 1 記載のアセンブリにおいて、
前記画像反転部材が、プリズムを備えていることを特徴とするアセンブリ。

【請求項 11】

請求項 1 記載のアセンブリにおいて、
さらに、前記光学的アセンブリから伝達された画像を受領するための回転可能画像センサを具備し、
前記画像センサが、前記プロセッサに対して接続されていて、前記第1信号および前記第2信号に基づき前記プロセッサによって回転駆動されることを特徴とするアセンブリ。

【請求項 12】

請求項 1 記載のアセンブリにおいて、
前記回転センサが、ロータリーエンコーダを備えていることを特徴とするアセンブリ。

【請求項 13】

請求項 1 記載のアセンブリにおいて、
前記画像配向ユニットが、前記加速度計によって提供された信号に基づいて鉛直方向を表す視覚的インジケータを備えていることを特徴とするアセンブリ。

【請求項 14】

請求項 13 記載のアセンブリにおいて、
前記視覚的インジケータが、複数のダイオードからなるアレイを備え、
前記複数のダイオードが個別的に点灯することによって、鉛直方向の表示が行われるものとされていることを特徴とするアセンブリ。

10

20

30

40

50

【請求項 1 5】

請求項 1 記載のアセンブリにおいて、
前記加速度計が、重力方向に対する前記画像配向ユニットの傾斜を検出するとともに、
その傾斜に関する信号を前記プロセッサに対して送出することを特徴とするアセンブリ。

【請求項 1 6】

スコープと画像センサハウジングとを連結するためのアセンブリであって、
第 1 端部および第 2 端部を有している画像配向ユニットと；
この画像配向ユニットの前記第 1 端部に対して連結されたスコープと；
前記画像配向ユニットの前記第 2 端部に対して連結された画像センサハウジングと；
少なくとも一部が前記画像配向ユニット内に収容されているとともに、内部を通して画
像を伝達するための光学的アセンブリであり、光学的画像を回転させるための少なくとも
1 つの回転可能な光学部材を備えている、光学的アセンブリと；
前記光学部材の回転を観測するとともに、前記光学部材を回転させるための第 1 信号を
生成する回転センサと；
前記画像配向ユニット内に配置され、かつ、前記画像配向ユニットの回転を観測する
とともに前記画像配向ユニットを回転させるための第 2 信号を生成する加速度計と；
前記回転センサと前記加速度計とに対して接続され、かつ、前記第 1 信号および前記第
2 信号を受領するとともに、前記第 1 信号および前記第 2 信号の少なくとも一部に基づき
、重力方向に対しての画像の配向性を計算するプロセッサと；
を具備していることを特徴とするアセンブリ。
10

【請求項 1 7】

請求項 1 6 記載のアセンブリにおいて、
前記スコープが、内視鏡であることを特徴とするアセンブリ。

【請求項 1 8】

請求項 1 7 記載のアセンブリにおいて、
前記画像センサハウジングが、カメラヘッドであることを特徴とするアセンブリ。

【請求項 1 9】

請求項 1 6 記載のアセンブリにおいて、
前記スコープが、長手方向軸線を有し、
視界ベクトルが、前記長手方向軸線から角度的にオフセットされていることを特徴とす
るアセンブリ。
30

【請求項 2 0】

請求項 1 6 記載のアセンブリにおいて、
前記スコープが、視野方向が可変とされた視界ベクトルを有していることを特徴とする
アセンブリ。

【請求項 2 1】

請求項 1 6 記載のアセンブリにおいて、
前記スコープが、前記画像配向ユニットに対して堅固に連結されていることを特徴とす
るアセンブリ。
40

【請求項 2 2】

請求項 1 6 記載のアセンブリにおいて、
前記カメラヘッドが、前記画像配向ユニットに対して堅固に連結されていることを特徴
とするアセンブリ。

【請求項 2 3】

請求項 1 6 記載のアセンブリにおいて、
さらに、前記光学部材を回転させるためのアクチュエータを具備し、
このアクチュエータが、前記プロセッサに対して接続されていて、前記プロセッサから
、画像を水平化するために必要とされる前記光学部材の回転量を表す信号を受領し得る
ものとされていることを特徴とするアセンブリ。

【請求項 2 4】

10

20

30

40

50

請求項 2 3 記載のアセンブリにおいて、
前記アクチュエータが、モータを備え、
さらに、

前記光学部材の少なくとも一部を収容する光学部材ハウジングと；

前記モータに対して連結されかつ前記モータによって回転駆動され得るものとされた第1ギヤと；

前記第1ギヤによって回転駆動され得るものとされた第2ギヤであるとともに、前記光学部材ハウジングに対して連結され、これにより、前記第2ギヤの回転駆動によって前記光学部材を回転駆動し得るものとされた、第2ギヤと；
を具備していることを特徴とするアセンブリ。

10

【請求項 2 5】

請求項 2 3 記載のアセンブリにおいて、
さらに、前記光学部材の少なくとも一部を収容する光学部材ハウジングを具備し、
前記画像配向ユニットが、メインハウジングを備え、
前記画像配向ユニットの前記第2連結部分が、前記メインハウジングに対して回転する
ものとされた回転可能部材を備え、

前記光学部材ハウジングが、前記回転可能部材に対して連結され、これにより、前記光学部材が、前記メインハウジングに対して、前記回転可能部材と一緒に回転するものとされ、

前記アクチュエータが、モータを備え、

さらに、このモータによって駆動される差動ギヤセットを具備し、

この差動ギヤセットが、前記光学部材ハウジングに対して連結され、これにより、前記光学部材が、前記差動ギヤセットによって回転駆動され得るものとされていることを特徴とするアセンブリ。

20

【請求項 2 6】

請求項 1 6 記載のアセンブリにおいて、
前記光学的アセンブリが、回転可能な第2光学部材を備え、
さらに、前記第2光学部材の回転を観測するとともに、前記第2光学部材を回転させる
ための第3信号を生成する第2回転センサを具備し、

前記プロセッサが、前記第2回転センサに対して接続されていて、前記第3信号を受領
するとともにこの第3信号を使用することによって、重力方向に対しての画像の配向性を
計算し得るものとされていることを特徴とするアセンブリ。

30

【請求項 2 7】

請求項 1 6 記載のアセンブリにおいて、
さらに、前記光学的アセンブリを回転させるためのアクチュエータを具備し、
このアクチュエータが、前記プロセッサに対して接続されていて、前記プロセッサから
、画像を水平化するために必要とされる前記光学的アセンブリの回転量を表す信号を受領
し得るものとされ、

前記画像配向ユニットが、メインハウジングを備え、

前記画像配向ユニットの前記第2連結部分が、前記メインハウジングに対して回転する
ものとされた回転可能部材を備え、

前記光学的アセンブリが、前記回転可能部材に対して連結され、これにより、前記光学
的アセンブリが、前記メインハウジングに対して、前記回転可能部材と一緒に回転する
ものとされていることを特徴とするアセンブリ。

40

【請求項 2 8】

請求項 1 6 記載のアセンブリにおいて、

さらに、前記光学的アセンブリから伝達された画像を受領するための回転可能画像セン
サを具備し、

前記画像センサが、前記プロセッサに対して接続されていて、前記第1信号および前記
第2信号に基づき前記プロセッサによって回転駆動されることを特徴とするアセンブリ。

50

【請求項 2 9】

請求項 1 6 記載のアセンブリにおいて、

前記画像配向ユニットが、前記加速度計によって提供された信号に基づいて鉛直方向を表す視覚的インジケータを備えていることを特徴とするアセンブリ。

【請求項 3 0】

請求項 2 9 記載のアセンブリにおいて、

前記視覚的インジケータが、複数のダイオードからなるアレイを備え、

前記複数のダイオードが個別的に点灯することによって、鉛直方向の表示が行われるものとされていることを特徴とするアセンブリ。

【請求項 3 1】

請求項 1 6 記載のアセンブリにおいて、

前記加速度計が、重力方向に対する前記画像配向ユニットの傾斜を検出するとともに、その傾斜に関する信号を前記プロセッサに対して送出することを特徴とするアセンブリ。

【請求項 3 2】

内視鏡システムであって、

主要部分と、連結アセンブリ部分と、を備えているカメラと；

このカメラ内に収容されているとともに、内部を通して画像を伝達するための光学的アセンブリであり、少なくとも 1 つの光学部材を備えている、光学的アセンブリと；

前記カメラ内に収容されているとともに、前記光学部材の回転を観測し、さらに、前記光学部材を回転させるための第 1 信号を生成する回転センサと；

前記連結アセンブリ部分内に配置され、かつ、前記連結アセンブリ部分の回転を観測するとともに前記連結アセンブリ部分を回転させるための第 2 信号を生成する加速度計と；

前記回転センサと前記加速度計とに対して接続され、かつ、前記第 1 信号および前記第 2 信号を受領するとともに、前記第 1 信号および前記第 2 信号の少なくとも一部に基づき、重力方向に対しての画像の配向性を計算するプロセッサと；

を具備していることを特徴とするシステム。

【請求項 3 3】

請求項 3 2 記載のシステムにおいて、

さらに、前記カメラの前記連結アセンブリ部分に対して連結された内視鏡を備えていることを特徴とするシステム。

【発明の詳細な説明】**【技術分野】****【0 0 0 1】**

本出願は、米国特許法第 119 (e) 条に基づき、2005 年 2 月 17 日付けで出願された特許文献 1 の優先権を主張するものである。

【0 0 0 2】

本発明は、例えば内視鏡といったような視界器具によって取得された画像を配向させるためのアセンブリに関するものである。より詳細には、本発明は、内視鏡に対して、例えばカメラといったような、画像の水平化を自動的に行うことによりあるいは鉛直方向の表示を提供することにより使用者に対して画像を配向させるセンサハウジングを連結するための連結アセンブリに関するものである。

【背景技術】**【0 0 0 3】**

例えば内視鏡といったような視界器具は、当該技術分野においては周知である。一般に、内視鏡は、体内通路あるいは体内キャビティ内へと挿入することによって、患者の体内のサイトのところにおいて、操作者が見ることを可能としたり、また、操作者がある種の外科的処置を行うことを可能としたり、するような医療デバイスである。公知なように、内視鏡は、剛直なものともまたフレキシブルなものともすることができ、また、一般に、長いチューブ状部材を備えている。この長いチューブ状部材は、例えば、使用者に対して画像を伝達し得るようなあるタイプのシステムを備えている。長いチューブ状部材は、ま

10

20

30

40

50

た、場合によっては、外科手術器具のための動作チャネルを備えている。

【0004】

より詳細には、スコープ自体が、全体的に長尺のシャフトとされ、このシャフトは、先端部と、基端部と、先端部と基端部との間にわたって延在する少なくとも1つの内部通路と、を備えている。シャフトの先端部のところには、光学系が配置されている。この光学系は、シャフトの内部通路を通って延在している。これにより、光学系は、シャフトの先端部の近傍に位置した選択された領域の画像を取得し得るとともに、シャフトの基端部へと、その画像を伝えることができる。例えばカメラといったような画像撮影センサが、シャフトの基端部に隣接して配置される。これにより、光学系によって取得され伝達された画像を、外科医が見るべきディスプレイデバイスに対して搬送することができる。

10

【0005】

しかしながら、そのようなシステムに関する1つの問題点は、外科医がカメラおよびスコープを操作する際に、カメラが対象物を忠実に追跡し、その際、カメラの直立軸をディスプレイ上における画像の直立軸として表示することであり、このため、多くの場合、対象をなす画像が回転してしまう。画像が回転した場合、外科医は、内視鏡キャビティ内においてどちらの方向が実際に上なのかといったように、方向の追従性を失う。この見当喪失は、内視鏡検査における主要な課題のうちの1つであって、場合によっては、手術時には異なる解剖学的部位に思えてしまうような例えば視神経を鉗で切ってしまうといったような深刻なミスを引き起こしかねない。したがって、外科医は、連続的に、自身で捉えている解剖学的部位の画像を、ディスプレイの内視鏡画像と関連させようとしなければならない。実際、どの方向が上であるかを確信することの必要性は、非常に重要なことであって、外科医が、内視鏡カバー ウィンドウ上の流体液滴の流れ方向を観察するとか、あるいは、血液の溜まり方向を探すとか、いったことが、普通になってきている。その目的は、キャビティ内における方向感覚を得ることである。加えて、類似して見える解剖学的特徴物どうしを識別し得ることの重要性の他にも、周囲の解剖学的組織に対してのスコープの位置の理解を補助し得るためにも、上方向を確信していることは、重要である。

20

【0006】

したがって、内視鏡がどのように操作されているかに關係なく、内視鏡画像の適切に上向きとされかつ重力によって水平化された配向性を維持し得るよう、多くのシステムが提案されている。そのようなシステムの例は、特許文献2～8に開示されている。

30

【0007】

重力によって水平化を行う内視鏡システムの基本的な公知構成が、図1A～図1Cに図示されている。図1Aは、一体型シャフト10とカメラヘッド12とを備えてなる内視鏡を示している。画像センサ14に加えて、カメラヘッド12は、さらに、プロセッサ16と、回転センサ18と、を収容している。電力の供給と電子通信とは、ケーブル20を介して行われている。画像を水平化するのに必要な画像回転は、個別のプロセッサ(図示せず)によって電子的に行われる。このカメラ一体型内視鏡が、単一のユニットであることにより、このカメラ一体型内視鏡は、手術室内において最も一般的に利用されている従来的な内視鏡およびカメラヘッドに対して、互換性を有していない。また、予想される使用者は、重力水平化能力を得るために、システムの全体を買わなければならない。

40

【0008】

図1Bは、重力水平化システムを示している。このシステムは、カメラヘッド12から着脱可能とされたシャフト10を備えている。カメラヘッド12は、さらに、プロセッサ16と、回転センサ18と、を収容している。画像の水平化は、モータ22とギヤトレン24, 26とを使用して画像センサ14を物理的に回転させることにより、実行される。このシステムの欠点は、カメラヘッド12が、従来の内視鏡における標準的な接眼部材と適合していないことであり、また、カメラヘッドと内視鏡シャフトとの間において特別の連結を必要とすることである。

【0009】

図1Cは、カメラヘッド12を示している。このカメラヘッド12は、接眼部材カプラ

50

30と、振り子28と、を備えている。振り子28は、自身の重量特性によって、カメラ位置の上方向を追求する。接眼部材32とライトポスト34とを備えた従来的内視鏡に対して互換性を有しているけれども、この解決手法の1つの欠点は、振り子28が厄介なことであり、水平に近づくにつれて応答性が悪くなることである。加えて、従来的カメラヘッドが既に利用可能であっても、この特殊カメラヘッドを購入する必要がある。最後に、これらシステムは、典型的には、オフアクシス(off-axis)の視界ベクトルを有した剛直な内視鏡に関しては、重力水平化をもたらさない。

【0010】

したがって、スコープの向きとは無関係に、スコープによって取得された画像を配向させ得るシステムが要望されている。さらに、標準的なカメラヘッドおよびスコープと一緒に使用し得るような、スコープによって取得された画像を配向させるためのシステムが要望されている。また、正確であるとともに、面倒なものではなく、オフアクシスの視界ベクトルを有したスコープと一緒に使用し得るような、スコープによって取得された画像を配向させるためのシステムが要望されている。

10

【特許文献1】米国特許予備出願第60/653,927号明細書

【特許文献2】Bonnet氏による米国特許第5,307,804号明細書

【特許文献3】Koninckx氏による米国特許第5,899,851号明細書

【特許文献4】Mattsson-Boze氏他による米国特許第6,097,423号明細書

【特許文献5】Green氏他による米国特許第6,471,637号明細書

【特許文献6】Chatenever氏他による米国特許出願第2002/0161280号明細書

20

【特許文献7】Hale氏他による米国特許出願第2004/0210105号明細書

【特許文献8】Schara氏他による米国特許出願第2005/0228230号明細書

【発明の開示】

【課題を解決するための手段】

【0011】

したがって、本発明の目的は、スコープがどのように操作されるかにかかわらず、スコープの向きを正確に観測し得るような、スコープによって取得された画像を配向させるためのアセンブリを提供することである。

30

【0012】

本発明の他の目的は、標準的なカメラヘッドに対して従来的な内視鏡を連結し得るような、スコープによって取得された画像を配向させるためのアセンブリを提供することである。

【0013】

本発明のさらに他の目的は、コンパクトであるような、スコープによって取得された画像を配向させるためのアセンブリを提供することである。

【0014】

本発明のさらに他の目的は、オフアクシスの視界ベクトルに対して動作し得るような、スコープによって取得された画像を配向させるためのアセンブリを提供することである。

【0015】

従来技術における様々な欠点を克服し得るよう、また、上記目的や利点の少なくともいくつかを達成し得るよう、本発明は、スコープと画像センサハウジングとを連結するための連結アセンブリであって、第1端部および第2端部を有している画像配向ユニットであるとともに、第1端部のところに位置しあつ画像配向ユニットとスコープとを連結するための第1連結部分と、第2端部のところに位置しあつ画像配向ユニットと画像センサハウジングとを連結するための第2連結部分と、を備えている画像配向ユニットと；少なくとも一部が画像配向ユニット内に収容されているとともに、内部を通して画像を伝達するための光学的アセンブリであり、光学的画像を回転させるための少なくとも1つの回転可能な光学部材を備えている、光学的アセンブリと；光学部材の回転を観測するとともに、光学部材を回転させるための第1信号を生成する回転センサと；画像配向ユニット内に配置

40

50

され、かつ、画像配向ユニットの回転を観測するとともに画像配向ユニットを回転させるための第2信号を生成する加速度計と；回転センサと加速度計とに対して接続され、かつ、第1信号および第2信号を受領するとともに、第1信号および第2信号の少なくとも一部に基づき、重力方向に対しての画像の配向性を計算するプロセッサと；を具備しているアセンブリを提供する。

【0016】

他の実施形態においては、本発明は、スコープと画像センサハウジングとを連結するための連結アセンブリであって、第1端部および第2端部を有している画像配向ユニットと；この画像配向ユニットの第1端部に対して連結されたスコープと；画像配向ユニットの第2端部に対して連結された画像センサハウジングと；少なくとも一部が画像配向ユニット内に収容されているとともに、内部を通して画像を伝達するための光学的アセンブリであり、光学的画像を回転させるための少なくとも1つの回転可能な光学部材を備えている、光学的アセンブリと；光学部材の回転を観測するとともに、光学部材を回転させるための第1信号を生成する回転センサと；画像配向ユニット内に配置され、かつ、画像配向ユニットの回転を観測するとともに画像配向ユニットを回転させるための第2信号を生成する加速度計と；回転センサと加速度計とに対して接続され、かつ、第1信号および第2信号を受領するとともに、第1信号および第2信号の少なくとも一部に基づき、重力方向に対しての画像の配向性を計算するプロセッサと；を具備しているアセンブリを提供する。

【0017】

さらに他の実施形態においては、本発明は、内視鏡アセンブリであって、主要部分と、連結アセンブリ部分と、を備えているカメラと；このカメラ内に収容されているとともに、内部を通して画像を伝達するための光学的アセンブリであり、少なくとも1つの光学部材を備えている、光学的アセンブリと；カメラ内に収容されているとともに、光学部材の回転を観測し、さらに、光学部材を回転させるための第1信号を生成する回転センサと；連結アセンブリ部分内に配置され、かつ、連結アセンブリ部分の回転を観測するとともに連結アセンブリ部分を回転させるための第2信号を生成する加速度計と；回転センサと加速度計とに対して接続され、かつ、第1信号および第2信号を受領するとともに、第1信号および第2信号の少なくとも一部に基づき、重力方向に対しての画像の配向性を計算するプロセッサと；を具備しているアセンブリを提供する。

【0018】

これら実施形態のいくつかにおいては、本発明は、さらに、光学部材を回転させるための例えはモータといったようなアクチュエータを具備し、このアクチュエータが、プロセッサに対して接続されていて、プロセッサから、画像を水平化するために必要とされる光学部材の回転量を表す信号を受領し得るものとされている。いくつかの実施形態においては、光学部材が、光学部材ハウジング内に配置され、第1ギヤが、モータに対して連結されかつモータによって回転駆動され得るものとされ、第2ギヤが、第1ギヤによって回転駆動され得るものとされ、光学部材ハウジングに対して連結され、これにより、第2ギヤの回転駆動によって光学部材を回転駆動し得るものとされる。

【0019】

いくつかの実施形態においては、画像配向ユニットが、メインハウジングを備え、画像配向ユニットの第2連結部分が、メインハウジングに対して回転するものとされた回転可能部材を備え、光学部材ハウジングが、回転可能部材に対して連結され、これにより、光学部材が、メインハウジングに対して、回転可能部材と一緒に回転するものとされ、アクチュエータに設けられたモータが、光学部材ハウジングに対して連結された差動ギヤセットを駆動し、これにより、光学部材が、差動ギヤセットによって回転駆動され得るものとされている。

【0020】

ある種の実施形態においては、光学的アセンブリが、回転可能な第2光学部材を備え、第2回転センサが、第2光学部材の回転を観測するとともに、第2光学部材を回転させるための第3信号を生成し、プロセッサが、第2回転センサに対して接続されていて、第3

10

20

30

40

50

信号を受領するとともにこの第3信号を使用することによって、重力方向に対しての画像の配向性を計算し得るものとされている。

【0021】

いくつかの実施形態においては、アクチュエータが、プロセッサに対して接続されていて、プロセッサから、画像を水平化するために必要とされる光学的アセンブリの回転量を表す信号を受領し得るものとされ、画像配向ユニットが、メインハウジングを備え、画像配向ユニットの第2連結部分が、メインハウジングに対して回転するものとされた回転可能部材を備え、光学的アセンブリが、回転可能部材に対して連結され、これにより、光学的アセンブリが、メインハウジングに対して、回転可能部材と一緒に回転するものとされている。

10

【0022】

ある種の実施形態においては、本発明は、さらに、光学的アセンブリから伝達された画像を受領するための回転可能画像センサを具備し、画像センサが、プロセッサに対して接続されていて、第1信号および第2信号に基づきプロセッサによって回転駆動される。

【0023】

いくつかの実施形態においては、画像配向ユニットが、加速度計によって提供された信号に基づいて鉛直方向を表す視覚的インジケータを備えている。このような実施形態のいくつかにおいては、視覚的インジケータが、複数のダイオードからなるアレイを備え、複数のダイオードが個別的に点灯することによって、鉛直方向の表示が行われるものとされている。

20

【発明を実施するための最良の形態】

【0024】

図1A～図1Cは、従来技術による画像配向システムを示す側面図である。

【0025】

図2Aは、本発明による画像配向機能付き連結アセンブリを示す側面図である。

【0026】

図2Bは、図2Aの本発明による画像配向機能付き連結アセンブリにおける画像配向ユニットを露出させて示す側面図である。

【0027】

図3A～図3Cは、図2Aおよび図2Bにおける画像配向アセンブリに関するさらなる詳細を示す側面図である。

30

【0028】

図4は、本発明による画像配向ユニットを使用した内視鏡カメラを示す側面図である。

【0029】

図5Aおよび図5Bは、本発明による内視鏡システムを示す斜視図であって、鉛直方向に関する視覚的インジケータを使用している。

【0030】

図5Cは、図5Aおよび図5Bの内視鏡アセンブリにおける画像配向ユニットを示す側面図である。

【0031】

図6は、図5Aおよび図5Bの内視鏡システムを示す斜視図であって、内視鏡が、オフアクシスの視界ベクトルを有している。

40

【0032】

本発明に基づく画像配向機能付き連結アセンブリの一実施形態における主要構成部材が、図2Aおよび図2Bに示されている。本明細書においては、『頂』、『底』、『上』、『下』、『上方』、『下方』、『直上』、『直下』、『上に』、『下に』、『上向き』、『下向き』、『上側』、『下側』、『前』、『後』、『前方』、『後方』、『前向き』、『後ろ向き』といった用語は、参照した目的に關して、図面上において図示された向きを表している。本発明の目的を得るに際しては、そのような向きに制限されることはない。

【0033】

50

画像配向ユニット36は、連結部分38を有した第1端部を備えている。連結部分38は、従来の内視鏡の接眼部材32に連結するための標準的カプラを有している。画像配向ユニット36は、連結部分40を有した第2端部を備えている。連結部分40は、それ自身の接眼部材40を備えることができる。この接眼部材40は、接眼部材カプラ30を介して、従来のカメラヘッド12に対して連結される。画像配向ユニット36は、後述するように、スコープからカメラに向けて内視鏡画像を送信し得るよう、内部に配置された光学的アセンブリを備えている。加速度計18が、ユニット36に設けられている。加速度計18は、重力方向に対してのユニット36のすべての回転を測定するものであり、さらに、ユニットの傾斜をも測定する。加速度計18は、この加速度計が接続されているプロセッサ16に対して、この回転を反映する信号を生成し送信する。

10

【0034】

ある種の有利な実施形態においては、光学的アセンブリは、一連をなすレンズ42、44と、光学的画像回転部材46と、光学的画像反転部材48と、を備えている。画像回転部材46は、例えばダブプリズムやKプリズムといったような、回転可能な光学部材を備えている。光学部材46は、少なくとも一部が、ハウジング50内に配置されている。ハウジング50は、ギヤ56に対して連結されている。アクチュエータ52によって回転駆動される他のギヤ54が、ギヤ56と噛合している。このようにして、例えばモータといったようなアクチュエータ52は、一組をなすギヤ54、56を介して、光学部材46を回転させることができる。例えばエンコーダ58といったような回転センサが、プリズム46の回転を観測する。回転センサは、加速度計18の場合と同様に、この回転センサが接続されているプロセッサ16に対して、回転信号を生成して送信する。プロセッサ16は、光学部材46およびユニット36の回転に関するこれら第1信号および第2信号として受領した情報を使用することにより、内視鏡画像を水平化するのに必要な回転量を計算することができる。これにより、光学軸回りに部材46を適切な量だけ回転させるための信号を、アクチュエータ52に対して供給することができる。

20

【0035】

いくつかの実施形態においては、配向ユニット36は、ケーブルを介して電力が供給される。一方、他の有利な実施形態においては、電力は、充電用コネクタ66を有した内蔵の2次電池64によって供給される。

30

【0036】

ある種の実施形態においては、配向ユニット36は、内視鏡接眼部材32に対して、緊密にクランプされる。これにより、ユニット36の回転を観測することによって、加速度計18は、また、内視鏡の回転を観測する。同様に、カメラヘッド12は、接眼部材40に対して、緊密にクランプされる。これにより、カメラヘッド12と接眼部材40との間には、相対回転は、存在しない。その結果、カメラヘッド12は、常に、配向ユニット36に対して既知の配向を有している。これにより、プロセッサ16は、追加的なセンサを使用することなく、回転部材プリズム46のための正確な調節量を計算することができる。内視鏡と配向ユニット36とカメラヘッド12とに関しての初期的な位置合わせは、各手順の最初の時点で、例えばノッチまたはラインといったような、外部校正マークあるいはインジケータに基づいて、行われる。

40

【0037】

ある種の実施形態においては、図3Aに示すように、配向ユニット36は、接眼部材40および光学的ハウジングチューブ68を、配向ユニット36とは独立に回転することを可能としている。いくつかの内視鏡操作において所望されるように、この独立した回転は、カメラヘッドに対して、内視鏡に対して回転し得るという自由度を付与する。例えば、外科医は、時によっては、カメラヘッドを保持しつつ内視鏡の光ケーブルを把持し、この状態で内視鏡を回転させることを好む。これには、カメラヘッドと内視鏡との間の相対回転が必要とされる。したがって、この増大した融通性を得るためにには、第2エンコーダ70を使用することによって、カメラヘッドと、内視鏡に対して堅固に連結された配向ユニット36と、の間の相対回転を観測する。第2エンコーダ70は、プロセッサ16に対し

50

て接続されており、カメラヘッドとユニット36との間の相対回転を反映した信号を、プロセッサ16に対して送出する。また、プロセッサは、加速度計18およびエンコーダ58から受領した情報と一緒にこの情報を使用することにより、内視鏡画像を水平化させ得るよう、アクチュエータ52が光学的部材ハウジング50を回転させなければならない回転量を計算する。

【0038】

図3Bに示すように、いくつかの実施形態においては、プリズム46は、光学的ハウジングチューブ68内においてユニット36の後方側に配置されている。また、前方側のプリズムアセンブリ80は、配向ユニット36のハウジングに対して固定されたままとされる。したがって、プリズム46は、カメラヘッド12と一緒に回転する。第2エンコーダに代えて、差動ギヤ駆動機構を使用することができる。そのような差動駆動機構は、適切な数の組をなすギヤ72, 74, 75, 76, 78を備えている。これらギヤのギヤ比を正確なものとすることにより、接眼部材40とアクチュエータ52とによって、回転部材プリズム46を独立に駆動することができる。これにより、カメラヘッドに対してのユニットと内視鏡との組合せ体の位置にかかわらず、画像を水平に維持することができる。エンコーダ58は、駆動ギヤ54の回転を検出することにより、回転部材プリズム46の回転を間接的に検出する。

【0039】

図3Cに示すように、内視鏡に対してカメラヘッドを回転させることが要望されているようないくつかの実施形態においては、画像回転用のプリズムを使用することに代えて、光学系と接眼部材とからなるアセンブリ40の全体を、回転させる。付設されたカメラヘッドが、アセンブリ40の全体と一緒に回転することにより、画像の水平化は、光学的画像の代わりにカメラ自体を回転させることにより、実行される。この場合、使用者は、カメラの代わりに、内視鏡あるいは配向ユニットを保持する。モータ52は、加速度計18およびエンコーダ58から受領した信号に基づきプロセッサ16から指示を受けるものであって、上述したように、標準的ギヤセット54, 56を介して、アセンブリ40の全体を回転させる。

【0040】

図4には、上述した画像水平化機能を備えた特殊なカメラヘッドが図示されている。カメラヘッドは、主要部分82と、連結アセンブリ84と、を備えている。連結アセンブリ84は、連結ジョイント86を介することによって主要部分82に対して回転し得るものであって、内視鏡の接眼部材32を堅固にクランプするとともに、加速度計18を収容している。連結アセンブリ84が内視鏡の接眼部材32を堅固にクランプしていることにより、加速度計18は、内視鏡の移動に追従してその移動を検出する。主要部分82は、画像センサ14とエンコーダ58と支持エレクトロニクス(図示せず)とを備えているものであって、標準的なカメラヘッドの場合と同様にして、内視鏡に対して自由に回転することができる。エンコーダ58は、光学的アセンブリ68の回転を検出する。光学的アセンブリ68は、その一部が、連結アセンブリ84の中に配置されている。上述したように、プロセッサ16は、加速度計18およびエンコーダ58からの信号に応答して、画像の上向き配向性を計算する。その後、画像の配向性が、電子的に調節される、あるいは、画像撮影センサ14を回転させることによって調節される、あるいは、カメラヘッドの中に配置し得る回転部材プリズムを回転させることによって調節される。

【0041】

いくつかの有利な実施形態においては、アセンブリは、重力方向に対する回転量に関する上記決定手法を使用することによって、画像を自動的に水平化するけれども、他の実施形態においては、図5A～図5Cに示すように、上記決定手法を使用することによって、内視鏡画像を再配向させることなく、外科医に対して、垂直方向を表すインジケータを提供する。ここで、いくらかの外科医は、操作時にカメラを手動で再配向させることに順応しており、必ずしも画像を自動的に修正しなくても、画像を真に上向きとするために必要な回転量を決定するに際しての補助としてインジケータを使用することによって、カメラ

自体を調整することができて、手術を継続することができる。

【0042】

例えば、まず最初に、図5Cに示すように、配向ユニット88は、複数の発光ダイオードからなるリング（あるいは、アレイ）90を備えている。アレイ90内の各ダイオードは、ハウジング内に配置された加速度計18によって生成された信号に基づいて、互いに個別的に点灯することができる。図5Aに示すように、特に明るく点灯したダイオード92が、内視鏡画像の上方向94を表すインジケータとして機能する。内視鏡の姿勢に応じて、この上方向94は、一般に、カメラヘッド12の物理的な上方向96と一致するわけではない。したがって、図5Bに示すように、点灯したダイオード92は、使用者に対して、画像を上向きとするためにはカメラヘッド12をどれだけの角度分98だけ回転させれば良いか、を伝える。発光ダイオードの他にも、鉛直方向を表す他のインジケータを使用することができる。例えば、加速度計18から受領した信号に応じてアクチュエータによって回転駆動されるような、マーカーを使用することができる。このマーカーは、ユニットに対して取り付けられる。

【0043】

典型的には、上述した配向ユニットは、内視鏡の接眼部材32に緊密に連結される。これにより、加速度計18が、内視鏡に対して直接的に対応して移動することとなる。しかしながら、他の実施形態においては、配向ユニットと接眼部材32との間の回転は、配向ユニットが相対回転を検出するための他の回転センサを備えることによって、提供することができる。例えば、いくつかの実施形態においては、内視鏡と配向ユニット（加速度計18を備えている）との間の相対回転を観測し得るよう、エンコーダに対しての回転連結が、使用される。この加速度計は、配向ユニットの回転を検出する。そして、内視鏡ではなく、エンコーダが、配向ユニットに回転と、内視鏡の回転と、を関連づける。加速度計は、また、なおも内視鏡の傾斜（すなわち、ピッチ）に関する情報を提供する。なぜなら、このことは、内視鏡と配向ユニットとの双方に対して、なおも同じであるからである。また、回転を検出するために使用されている任意のロータリーエンコーダを、増分し得ること、また、絶対数とし得ること、に注意されたい。

【0044】

上述したように、内視鏡と、配向ユニットと、カメラヘッドと、についての初期的配置を、決定しなければならない。これは、参照配置として機能し、操作時に生じた配置に関するすべての変化は、この参照配置に対する相対的なものとして、測定される。典型的には、使用者は、各使用の最初の時点で、内視鏡と配向ユニットとカメラとを、参照配置に基づいて配向させる。場合によっては、センサを使用することによって、インジケータまたはマーカーに基づいてシステム構成部材どうしの相対配置を自動的に検出することができる。これにより、使用者は、いかなる手動での位置合わせをも、行う必要がない。

【0045】

固定された、例えば30°や70°といったようなオフ角度の視野方向を備えた内視鏡に関しては、配向ユニットによって行われる垂直方向の水平化やインジケータ表示は、オフ角度に特有なものとされる、あるいは、調整可能な設定値を有している。図6に示すように、使用者は、初期的参照配置に応じて配向ユニットを調整する。その場合、カメラヘッド12および配向ユニット36の上方向94と、内視鏡のオフ角度視野方向98とは、同じ平面100内に存在する。上方向は、位置合わせノッチ102, 104, 106によって表示され、ユニット36は、数学的フレームワークによって予め校正される。このことは、Schara氏他による米国特許出願第2005/0154260号明細書および米国特許出願第2005/0228230号明細書に記載されている。これら文献の記載内容は、参考のため、ここに組み込まれる。ユニット36が調整可能な設定値を有している場合、使用者は、一組をなすボタン108を使用することによって、内視鏡の角度を選択することができる。その後、プロセッサ16は、選択された設定値に基づいて上記手法を使用して画像配向パラメータを調節する。

【0046】

10

20

30

40

50

上記説明が例示に過ぎず、本発明を限定するものではないこと、また、本発明の精神を逸脱することなく、当業者に自明の修正を行い得ることは、理解されるであろう。したがって、本発明の範囲を規定するに際しては、上記説明ではなく、特許請求の範囲が使用されるべきである。

【図面の簡単な説明】

【0047】

【図1A】従来技術による画像配向システムを示す側面図である。

【図1B】従来技術による画像配向システムを示す側面図である。

【図1C】従来技術による画像配向システムを示す側面図である。

【図2A】本発明による画像配向機能付き連結アセンブリを示す側面図である。 10

【図2B】図2Aの本発明による画像配向機能付き連結アセンブリにおける画像配向ユニットを露出させて示す側面図である。

【図3A】図2Aおよび図2Bにおける画像配向アセンブリに関するさらなる詳細を示す側面図である。

【図3B】図2Aおよび図2Bにおける画像配向アセンブリに関するさらなる詳細を示す側面図である。

【図3C】図2Aおよび図2Bにおける画像配向アセンブリに関するさらなる詳細を示す側面図である。

【図4】本発明による画像配向ユニットを使用した内視鏡カメラを示す側面図である。

【図5A】本発明による内視鏡システムを示す斜視図であって、鉛直方向に関する視覚的インジケータを使用している。 20

【図5B】本発明による内視鏡システムを示す斜視図であって、鉛直方向に関する視覚的インジケータを使用している。

【図5C】図5Aおよび図5Bの内視鏡アセンブリにおける画像配向ユニットを示す側面図である。

【図6】図5Aおよび図5Bの内視鏡システムを示す斜視図であって、内視鏡が、オフアクシスの視界ベクトルを有している。

【符号の説明】

【0048】

12 カメラヘッド

16 プロセッサ

18 加速度計

30 30 接眼部材カプラ

32 接眼部材

36 画像配向ユニット

38 連結部分

40 連結部分、接眼部材

46 光学的画像回転部材、光学部材、プリズム

48 光学的画像反転部材

50 ハウジング

52 アクチュエータ

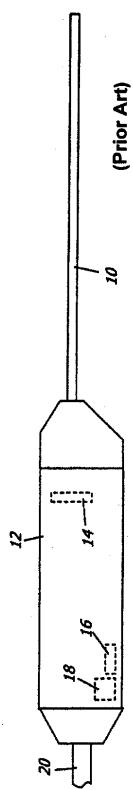
54 ギヤ

56 ギヤ

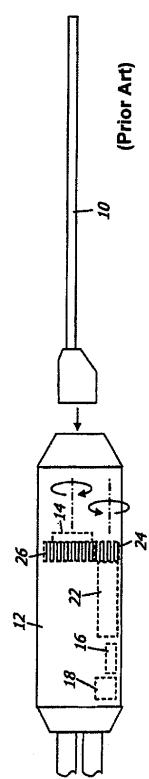
58 エンコーダ、回転センサ

68 光学的ハウジングチューブ

70 第2エンコーダ

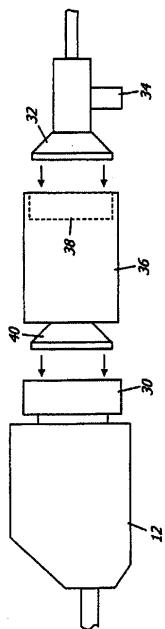

10

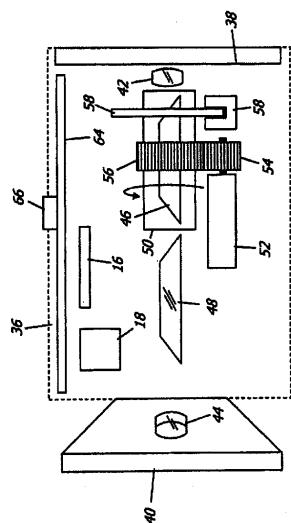
20

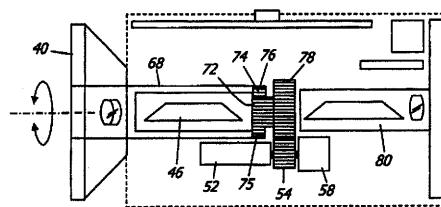

30

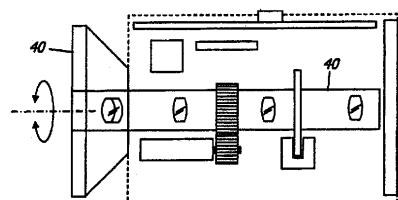
40

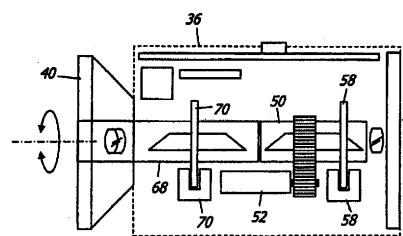
【図 1 A】

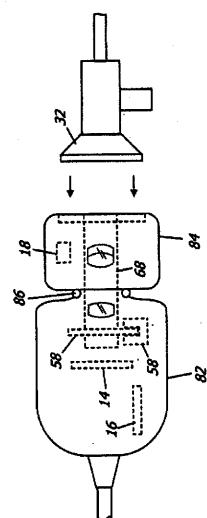

【図 1 B】

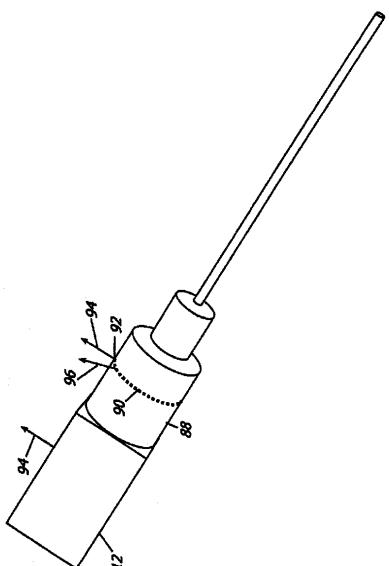

【図 1 C】

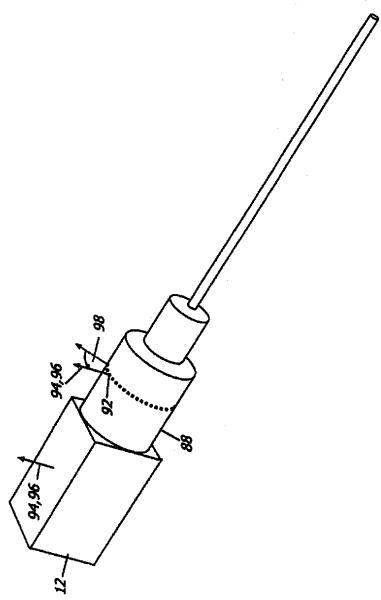

【図 2 A】

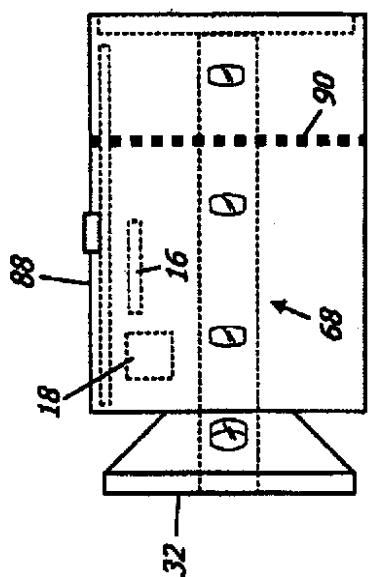

【図2B】

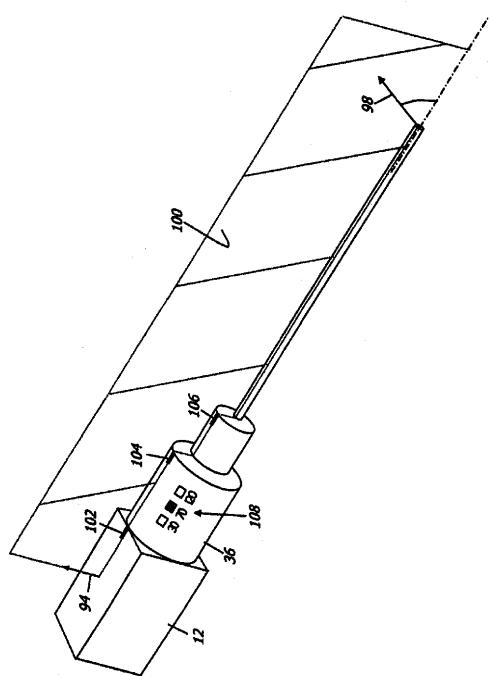

【図3B】


【図3C】


【図3A】


【図4】


【図5A】


【図5B】

【図5C】

【図6】

フロントページの続き

(72)発明者 ハンス・デイヴィッド・ホーグ

アメリカ合衆国・カリフォルニア・91006・アルカディア・ラ・ポルテ・ストリート・19・
スイート・#102

(72)発明者 エリック・エル・ヘイル

アメリカ合衆国・カリフォルニア・91001・アルタデナ・イースト・カラヴェラス・ストリー
ト・257

(72)発明者 ネイサン・ジョン・スカラ

アメリカ合衆国・カリフォルニア・91107・パサデナ・サウス・クレイグ・33・#3

F ターム(参考) 2H040 BA04 CA26 DA52 GA02 GA11
4C061 GG17 PP11

【外国語明細書】

TITLE OF INVENTION

IMAGE ORIENTING COUPLING ASSEMBLY

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This patent application claims the benefit of, under Title 35, United States Code, Section 119(e), U.S. Provisional Patent Application No. 60/653,927, filed February 17, 2005.

FIELD OF THE INVENTION

[0002] The present invention relates to an assembly for orienting images obtained by a viewing instrument, such as an endoscope. More specifically, the invention relates to a coupling assembly to connect an endoscope to a sensor housing, such as a camera, that orients the images for the user by automatically leveling them or providing an indication of the vertical direction.

BACKGROUND OF THE INVENTION

[0003] Various types of viewing scopes, such as endoscopes, are generally well known in the art. Generally, an endoscope is a medical device for insertion into a body passageway or cavity that enables an operator to view and/or perform certain surgical procedures at a site inside a patient's

body. As is known, endoscopes may be either rigid or flexible, and generally include a long tubular member equipped with, for example, some type of system for transmitting images to the user, and in some cases, a working channel for a surgical instrument.

[0004] More specifically, the scope itself generally comprises an elongated shaft having a distal end and a proximal end, and at least one internal passageway extending between the distal end and the proximal end. Optics are disposed at the distal end of the shaft and extend through an internal passageway of the shaft, such that the optics can capture an image of a selected region located near the distal end of the shaft and convey that image to the proximal end of the shaft. An image sensor, such as a camera, is disposed adjacent to the proximal end of the shaft, such that the image obtained and transmitted by the optics can be conveyed to a display device to be viewed by a physician.

[0005] One problem with such systems, however, is that, as a surgeon manipulates the scope and camera, the camera faithfully relates what it sees, with its own upright axis displayed as the upright axis of the image on the display, which often results in rotation of the images being viewed. As the image rotates, the surgeon loses track of which direction is actually up inside the endoscopic cavity. This disorientation is one of the major challenges in endoscopy, and, at times, has resulted in severe mistake such as the snipping of optical nerves that, during the procedure, were believed to be a different

part of the anatomy. Accordingly, the surgeon must continuously try to correlate his own mental picture of the anatomy with the endoscopic picture of the display. Indeed, the need to be sure of which direction is up is so important that it has become common for surgeons to observe the flow direction of fluid droplets on the endoscope cover window or search for pooling blood in order to get a sense of direction inside the cavity. Additionally, besides the importance of being able to distinguish between anatomical features that look similar, it is also important to be sure of the up direction in order to help understand the position of the scope relative to the surrounding anatomy.

[0006] Accordingly, a number of systems have been proposed to maintain the proper upright, gravity-leveled orientation of the endoscopic images irrespective of how the endoscope is being manipulated. Examples, of such systems are described in U.S. Patent No. 5,307,804 to Bonnet, U.S. Patent No. 5,899,851 to Koninckx, U.S. Patent No. 6,097,423 to Mattsson-Boze, et al., U.S. Patent No. 6,471,637 to Green, et al., U.S. Patent Application No. 2002/0161280 by Chatenever, et al., U.S. Patent Application No. 2004/0210105 by Hale, et al., and U.S. Patent Application No. 2005/0228230 by Schara, et al.

[0007] The basic known designs of gravity-leveled endoscopic systems are illustrated in Figures 1A-C. Figure 1A shows an endoscope that has an integrated shaft 10 and camera head 12. In addition to an image sensor 14,

the camera head 12 also houses a processor 16 and rotation sensor 18.

Power and electronic communication is provided through a cable 20. The image rotation required to level the image is done electronically by a separate processor (not shown). Because this integrated camera endoscope is a single unit, it is not compatible with the traditional endoscopes and camera heads most commonly available in the operating room, and a prospective user must buy the whole system in order to obtain gravity-leveling capabilities.

[0008] Figure 1B shows a gravity-leveled system that has a shaft 10 that is detachable from the camera head 12, which also houses a processor 16 and a rotation sensor 18. Image leveling is accomplished by physically rotating an image sensor 14 with a motor 22 and gear train 24, 26. A disadvantage of this system is that the camera head 12 is not compatible with the standard eyepiece of traditional endoscopes, but rather, requires a special coupling between the camera head and the endoscope shaft.

[0009] Figure 1C illustrates a camera head 12 with an eyepiece coupler 30 and pendulum 28, which seeks the upright camera position by the nature of its weight. While compatible with a traditional endoscope with an eyepiece 32 and a light post 34, one disadvantage of this solution is that the pendulum 28 is cumbersome and becomes unresponsive as it approaches horizontal. Additionally, it requires the purchase of this specialty camera head, even if a traditional camera head is already available. Finally, these systems typically

do not provide gravity-leveling for rigid endoscopes with an off-axis view vector.

[00010] What is desired, therefore, is a system for orienting the images obtained by a scope independently of the orientation of the scope. What is further desired is a system for orienting the images obtained by a scope that can be employed with standard camera heads and scopes. What is also desired is a system for orienting the images obtained by a scope that is accurate, not cumbersome, and can be used with scopes having an off-axis view vector.

SUMMARY OF THE INVENTION

[00011] Accordingly, it is an object of the present invention to provide an assembly for orienting the images obtained by a scope that can accurately monitor the orientation of the scope regardless of how it is manipulated.

[0010] It is a further object of the present invention to provide an assembly for orienting the images obtained by a scope that can couple a traditional endoscope to a standard camera head.

[0011] It is yet another object of the present invention to provide an assembly for orienting the images obtained by a scope that is compact.

[0012] It is still another object of the present invention to provide an assembly for orienting the images obtained by a scope that works with an off-axis view vector.

[0013] In order to overcome the deficiencies of the prior art and to achieve at least some of the objects and advantages listed, the invention comprises a coupling assembly for connecting a scope and image sensor housing, including a image orientation unit having first and second ends, the unit having a first coupler section located at the first end of the unit for coupling the unit to a scope and a second coupler section located at the second end of the unit for coupling the unit to an image sensor housing, an optical assembly at least partly arranged in the unit for transmitting images therethrough, the optical assembly having at least one rotatable optical element that rotates the optical images, a rotation sensor for monitoring rotation of the optical element and generating a first signal therefor, an accelerometer arranged in the image orientation unit for monitoring the rotation of the unit and generating a second signal therefor, and a processor connected to the rotation sensor and the accelerometer for receiving the first and second signals and, at least partly based on the first and second signals, calculating the orientation of the images relative to the direction of gravity.

[0014] In another embodiment, the invention comprises a coupling assembly connecting a scope and image sensor housing, including an image orientation unit having first and second ends, a scope coupled to the first end

of the image orientation unit, an image sensor housing coupled to the second end of the image orientation unit, an optical assembly at least partly arranged in the unit for transmitting images therethrough, the optical assembly having at least one rotatable optical element that rotates the optical images, a rotation sensor for monitoring rotation of the optical element and generating a first signal therefor, an accelerometer arranged in the image orientation unit for monitoring the rotation of the unit and generating a second signal therefor, and a processor connected to the rotation sensor and the accelerometer for receiving the first and second signals and, at least partly based on the first and second signals, calculating the orientation of the images relative to the direction of gravity.

[0015] In yet another embodiment, the invention comprises an endoscopic assembly, including a camera, the camera comprising a main section and a coupling assembly section, an optical assembly arranged in the camera for transmitting images therethrough, the optical assembly having at least one optical element, a rotation sensor arranged in the camera for monitoring rotation of the optical element and generating a first signal therefor, an accelerometer arranged in the coupling assembly section for monitoring the rotation of the coupling assembly section and generating a second signal therefor, and a processor connected to the rotation sensor and the accelerometer for receiving the first and second signals and, at least partly

based on the first and second signals, calculating the orientation of the images relative to the direction of gravity.

[0016] In some of these embodiments, the invention further includes an actuator, such as a motor, for rotating the optical element, wherein the actuator is connected to the processor to receive a signal therefrom indicating the amount to rotate the optical element in order to level the images. In some embodiments, the optical element is disposed in an optical element housing, a first gear is coupled to the motor and rotated thereby, and a second gear is driven by the first gear and coupled to the optical element housing such that the optical element is rotated by rotation of the second gear.

[0017] In some embodiments, the orientation unit includes a main housing, the second coupling section of the orientation unit includes a rotatable member that rotates relative to the main housing, and the optical element housing is coupled to the rotating member such that it rotates with the rotating member relative to the main housing, and the motor drives a differential gear set coupled to the optical element housing such that the optical element is rotated thereby.

[0018] In certain embodiments, the optical assembly includes a second rotatable optical element, and a second rotation sensor monitors rotation of the second optical element and generates a third signal therefor, wherein the processor is connected to the second rotation sensor for also receiving and

using the third signal to calculate the orientation of the images relative to the direction of gravity.

[0019] In some embodiments, the actuator is connected to the processor to receive a signal therefrom indicating the amount to rotate the optical assembly in order to level the images, wherein the orientation unit includes a main housing, the second coupling section of the orientation unit includes a rotatable member that rotates relative to the main housing, and the optical assembly is coupled to the rotating member such that the optical assembly rotates with the rotating member relative to the main housing.

[0020] In certain embodiments, the invention further includes a rotatable image sensor for receiving the images transmitted by the optical assembly, wherein the image sensor is connected to the processor and is rotated based on the first and second signals.

[0021] In some embodiments, the orientation unit includes a visual indicator that indicates the direction of vertical based on the signal provided by the accelerometer. In some of these embodiments, the visual indicator comprises an array of diodes, wherein the diodes are individually illuminated to indicate the direction of vertical.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] Figures 1A-C are side views of image orientation systems in the prior art.

[0023] Figure 2A is a side view of an image orienting coupling assembly in accordance with the invention.

[0024] Figure 2B is an exposed side view of the image orientation unit of the image orienting coupling assembly of Figure 2A.

[0025] Figures 3A-C are side views showing additional detail of the image orientation assembly of Figures 2A-B.

[0026] Figure 4 is a side view of an endoscopic camera employing an image orientation unit in accordance with the invention.

[0027] Figures 5A-B are isometric views of an endoscopic system in accordance with the invention using a visual indicator of the vertical direction.

[0028] Figure 5C is a side view of the image orientation unit of the endoscopic assembly of Figures 5A-B.

[0029] Figure 6 is an isometric view of the endoscopic system of Figures 5A-B with a scope having an off-axis view vector.

DETAILED DESCRIPTION OF THE INVENTION

[0030] The basic components of one embodiment of an image orienting coupling assembly in accordance with the invention are illustrated in Figures 2A-B. As used in the description, the terms "top," "bottom," "above," "below," "over," "under," "above," "beneath," "on top," "underneath," "up," "down," "upper," "lower," "front," "rear," "back," "forward" and "backward" refer to the objects referenced when in the orientation illustrated in the drawings, which orientation is not necessary for achieving the objects of the invention.

[0031] An image orientation unit 36 has a first end with a coupling section 38, which comprises a standard coupler for connecting to a traditional endoscope eyepiece 32, and a second end with a coupling section 40, which may comprise its own eyepiece 40 that is connected to a traditional camera head 12 via an eyepiece coupler 30. The image orientation unit 36 has an optical assembly arranged therein for transmitting the endoscopic images from the scope to the camera, which is further explained below. An accelerometer 18 is arranged the unit 36, which gauges any rotation of the unit 36 relative to the direction of gravity, as well as the inclination of the unit. The accelerometer 18 generates and communicates a signal reflecting this rotation to a processor 16 connected thereto.

[0032] In certain advantageous embodiments, the optical assembly includes a series of lenses 42, 44, an optical image rotator 46, and an optical

image reverser 48. The image rotator 46 comprises a rotatable optical element, such as, for example, a dove prism or a K prism. The optical element 46 is at least partly disposed in a housing 50, and the housing 50 is coupled to a gear 56. Another gear 54, which is rotated by an actuator 52, engages the gear 56. In this way, the actuator 52, such as a motor, causes the optical element 46 to rotate via the gear set 54, 56. A rotation sensor, such as an encoder 58, monitors the rotation of the prism 46 and, like the accelerometer 18, generates and communicates a rotation signal to the processor 16, which is likewise connected thereto. The processor 16 uses the information received in these first and second signals respecting the rotation of the optical element 46 and the unit 36 to calculate the amount of rotation required to level the endoscopic image, and accordingly provides a signal to the actuator 52 to rotate the element 46 about the optical axis the appropriate amount.

[0033] In some embodiments, the orientation unit 36 is powered via a cable, while in other advantageous embodiments, it is powered by an on-board rechargeable battery 64 with a recharging connector 66.

[0034] In certain embodiments, the orientation unit 36 is tightly clamped to the endoscope eyepiece 32 so that, by monitoring the rotation of the unit 36, the accelerometer 18 also monitors the rotation of the endoscope. Similarly, the camera head 12 is clamped tightly to the eyepiece 40 such that there is no relative rotation between the camera head 12 and the eyepiece 40. As a

result, the camera head 12 always has a known orientation relative to the orientation unit 36 so that the processor 16 can compute the correct adjustments for the rotator prism 46 without additional sensors. The initial alignment of the endoscope, orientation unit 36, and camera head 12 is done at the beginning of each procedure according to external calibration marks or indicators, such as notches or lines.

[0035] In certain embodiments, as illustrated in Figure 3A, the orientation unit 36 allows the eyepiece 40 and an optical housing tube 68 to rotate independently of the orientation unit 36. This independent rotation gives the camera head the freedom to rotate relative to the endoscope, as is desired in some endoscopic procedures. For example, surgeons sometimes like to hold the camera head and grab the endoscopic light cable to rotate the endoscope, requiring relative rotation between the camera head and the endoscope. Accordingly, in order to achieve this increased flexibility, a second encoder 70 is used to monitor the relative rotation between the camera head and the orientation unit 36 rigidly connected to the endoscope. The encoder 70 is connected to the processor 16 and sends a signal thereto reflecting the rotation of the camera head relative to the unit 36, and the processor uses this information, along with the information received from the accelerometer 18 and encoder 58, to calculate the amount the actuator 52 must rotate the optical element housing 50 in order to level the endoscopic image.

[0036] As shown in Figure 3B, in some embodiments, the prism 46 is positioned in the rear of the unit 36 in the optical housing tube 68, and the forward prism assembly 80 remains fixed to the housing of the orientation unit 36. Accordingly, the prism 46 rotates with the camera head 12, and a differential gear drive can be used instead of a second encoder. Such a differential drive includes an appropriate set of gears 72, 74, 75, 76, 78 with the correct ratio to allow the eyepiece 40 and the actuator 52 to drive rotator prism 46 independently, such that the image stays leveled regardless of the position of the unit/endoscope combination relative to the camera head. The encoder 58 indirectly senses the rotation of the rotator prism 46 by sensing the rotation of the drive gear 54.

[0037] As shown in Figure 3C, in some embodiments where it is desired to permit the camera head to rotate relative to the endoscope, instead of using a prism to rotate the image, an entire optics-eyepiece assembly 40 is rotated. Because the attached camera head rotates with the entire assembly 40, the image leveling is accomplished by rotating the camera itself instead of the optical image. In this case, the user holds the endoscope or orientation unit instead of the camera, and the motor 52, which receives its instructions from the processor 16 based on the signals received from the accelerometer 18 and encoder 58, rotates the entire assembly 40 via a standard gear set 54, 56, as previously explained.

[0038] Referring to Figure 4, a specialty camera head is illustrated that includes the above described image-leveling. The camera head includes a main section 82 and coupling assembly 84. The coupling assembly 84, which can rotate relative to the main section 82 through a coupling joint 86, clamps rigidly to an endoscope eyepiece 32 and houses an accelerometer 18. Because this coupling assembly 84 clamps rigidly to an endoscope eyepiece 32, the accelerometer 18 follows and senses the motion of the endoscope. The main section 82, which comprises an image sensor 14, an encoder 58, and supporting electronics (not shown) can spin freely relative to the endoscope, just like a standard camera head. The encoder 58 senses the rotation of the optics assembly 68, which is partly disposed in the coupling assembly 84. The processor 16 calculates an up-right image orientation in response to signals from the accelerometer 18 and encoder 58, as previously described. The image orientation is then adjusted electronically, or by rotating the image sensor 14, or by rotating a rotator prism, which may be arranged in the camera head.

[0039] Though, in some advantageous embodiments, the assembly uses the above described determination of rotation relative to the direction of gravity to automatically level the image, in other embodiments, this is used to provide the surgeon with an indicator of vertical without reorientating the endoscopic image, as shown in Figures 5A-C. This allows surgeons, some of whom have become accustomed to reorienting the camera manually during a

procedure and do not necessarily require the image to be automatically corrected for them, to continue the practice of adjusting the camera themselves by using the indicator as an aid in determining how much rotation is needed in order to obtain a truly upright image.

[0040] For example, referring first to Figure C, the orientation unit 88 includes a ring a light emitting diodes 90. Each diode in the array 90 can be individually illuminated based on a signal produced by the accelerometer 18 arranged in the housing. As shown in Figure 5A, a particular illuminated diode 92 acts as an indicator of the up direction 94 of the endoscopic image. Depending on the attitude of the endoscope, this up-direction 94 is generally not aligned with the physical up-direction 96 of the camera head 12. Thus, as illustrated in Figure 5B, the illuminated diode 92 tells the user through what angle 98 to rotate the camera head 12 in order to obtain an upright image. Other indicators of vertical may be employed besides light emitting diodes, such as, for example, a marker mounted to the unit such that it is rotatable by an actuator according to signals received from the accelerometer 18.

[0041] Typically, the orientation units described above are coupled tightly to the eyepiece 32 of the endoscope, such that the accelerometer 18 moves in direct correspondence with the endoscope. However, in other embodiments, rotation between the orientation unit and the eyepiece 32 may be provided if the orientation unit includes another rotation sensor for sensing the relative rotation. For example, in some embodiments, a rotating coupling

with an encoder to monitor the relative rotation between the endoscope and the orientation unit (including the accelerometer 18) is employed. This accelerometer senses the rotation of the orientation unit and not the endoscope, but the encoder would relate the roll of the orientation unit to the roll of the endoscope. The accelerometer would also still provide information about the endoscope inclination (i.e., pitch), as this would still be the same for both the scope and the orientation unit. It should also be noted that any rotary encoder used to sense rotation could be either incremental or absolute.

[0042] As previously noted, the initial arrangement of the endoscope, orientation unit, and camera head must be determined. This serves as the reference configuration, and all changes in configuration occurring during a procedure are measured relative to this reference. Typically, a user would orient the endoscope, orientation unit, and camera according to a reference orientation at the beginning of each use. In some cases, sensors are employed to automatically detect the relative arrangement of the system components based on indicators or markers so that the user does not have to perform any manual alignment.

[0043] For endoscopes with fixed, off-angle viewing direction, such as thirty or seventy degrees, the leveling or indication of vertical performed by the orientation unit would either be specific to the off-angle, or it would have an adjustable setting. As illustrated in Figure 6, the user lines up the orientation unit according to an initial reference configuration, in which the up

directions 94 of the camera head 12, the orientation unit 36, and the off-angle viewing direction 98 of the endoscope lie in the same plane 100. The up directions are indicated by alignment notches 102, 104, 106, and the unit 36 is precalibrated according to a mathematical framework, such as that disclosed in U.S. Patent Application Nos. 2005/0154260 and 2005/0228230 by Schara, et al., the specifications of which is hereby incorporated herein in their entireties by reference. If the unit 36 has an adjustable setting, the user can select the angle for the endoscope with a set of buttons 108. The processor 16 then adjusts the image orientation parameters as taught in the aforementioned applications according to the selected setting.

[0044] It should be understood that the foregoing is illustrative and not limiting, and that obvious modifications may be made by those skilled in the art without departing from the spirit of the invention. Accordingly, reference should be made primarily to the accompanying claims, rather than the foregoing specification, to determine the scope of the invention.

What is claimed is:

1. A coupling assembly for connecting a scope and image sensor housing, comprising:

a image orientation unit having first and second ends, said unit having a first coupler section located at the first end of said unit for coupling said unit to a scope and a second coupler section located at the second end of said unit for coupling said unit to an image sensor housing;

an optical assembly at least partly arranged in said unit for transmitting images therethrough, said optical assembly having at least one rotatable optical element that rotates the optical images;

a rotation sensor for monitoring rotation of said optical element and generating a first signal therefor;

an accelerometer arranged in said image orientation unit for monitoring the rotation of said unit and generating a second signal therefor; and

a processor connected to said rotation sensor and said accelerometer for receiving the first and second signals and, at least partly based on the first and second signals, calculating the orientation of the images relative to the direction of gravity.

2. The assembly of claim 1, further comprising an actuator for rotating said optical element, wherein said actuator is connected to said processor to receive a signal from said processor indicating the amount to rotate said optical element in order to level said images.

3. The assembly of claim 2, wherein said actuator comprises a motor, further comprising:

an optical element housing in which said optical element is at least partly disposed;
a first gear coupled to said motor and rotated thereby;
a second gear driven by said first gear and coupled to said optical element housing such that said optical element is rotated by rotation of said second gear.

4. The assembly of claim 2, further comprising:

an optical element housing in which said optical element is at least partly disposed;
wherein said orientation unit includes a main housing, the second coupling section of said orientation unit includes a rotatable member that rotates relative to said main housing, and said optical element housing is

coupled to said rotating member such that said optical element rotates with said rotating member relative to said main housing;

wherein said actuator comprises a motor; and

a differential gear set driven by said motor and coupled to said optical element housing such that said optical element is rotated thereby.

5. The assembly of claim 1, wherein said optical assembly includes a second rotatable optical element, further comprising a second rotation sensor for monitoring rotation of said second optical element and generating a third signal therefor, wherein said processor is connected to said second rotation sensor for receiving and using the third signal to calculate the orientation of the images relative to the direction of gravity.

6. The assembly of claim 1, further comprising:

an actuator for rotating said optical assembly, wherein said actuator is connected to said processor to receive a signal from said processor indicating the amount to rotate said optical assembly in order to level the images; and

wherein said orientation unit includes a main housing, the second coupling section of said orientation unit includes a rotatable member that rotates relative to said main housing, and said optical assembly is coupled to

said rotating member such that said optical assembly rotates with said rotating member relative to said main housing.

7. The assembly of claim 1, wherein said optical element comprises a dove prism.

8. The assembly of claim 1, wherein said optical element comprises a K prism.

9. The assembly of claim 1, wherein said optical assembly further includes an image reverser.

10. The assembly of claim 1, wherein said image reverser comprises a prism.

11. The assembly of claim 1, further comprising a rotatable image sensor for receiving the images transmitted by said optical assembly, wherein said image sensor is connected to said processor and rotated thereby based on the first and second signals.

12. The assembly of claim 1, wherein said rotation sensor comprises a rotary encoder.

13. The assembly of claim 1, wherein said unit further includes a visual indicator that indicates the direction of vertical based on the signal provided by the accelerometer.

14. The assembly of claim 13, wherein said visual indicator comprises an array of diodes, wherein said diodes are individually illuminated to indicate the direction vertical.

15. The assembly of claim 1, wherein said accelerometer senses the inclination of said unit relative to the direction of gravity and communicates a signal therefor to said processor.

16. An assembly connecting a scope and an image sensor housing, comprising:

- an image orientation unit having first and second ends;
- a scope coupled to the first end of said image orientation unit;
- an image sensor housing coupled to the second end of said image orientation unit;

an optical assembly at least partly arranged in said unit for transmitting images therethrough, said optical assembly having at least one rotatable optical element that rotates the optical images;

a rotation sensor for monitoring rotation of said optical element and generating a first signal therefor;

an accelerometer arranged in said image orientation unit for monitoring the rotation of said unit and generating a second signal therefor; and

a processor connected to said rotation sensor and said accelerometer for receiving the first and second signals and, at least partly based on the first and second signals, calculating the orientation of the images relative to the direction of gravity.

17. The assembly of claim 16, wherein the scope is an endoscope.

18. The assembly of claim 17, wherein the image sensor housing is a camera head.

19. The assembly of claim 16, wherein the scope has a longitudinal axis and a view vector angularly offset from the longitudinal axis.

20. The assembly of claim 16, wherein the scope has a view vector with a variable direction of view.

21. The assembly of claim 16, wherein the scope is rigidly connected to said orientation unit.

22. The assembly of claim 16, wherein the camera head is rigidly connected to said orientation unit.

23. The assembly of claim 16, further comprising an actuator for rotating said optical element, wherein said actuator is connected to said processor to receive a signal from said processor indicating the amount to rotate said optical element in order to level said images.

24. The assembly of claim 23, wherein said actuator comprises a motor, further comprising:

an optical element housing in which said optical element is at least partly disposed;

a first gear coupled to said motor and rotated thereby;

a second gear driven by said first gear and coupled to said optical element housing such that said optical element is rotated by rotation of said second gear.

25. The assembly of claim 23, further comprising:

an optical element housing in which said optical element is at least partly disposed;

wherein said orientation unit includes a main housing, the second coupling section of said orientation unit includes a rotatable member that rotates relative to said main housing, and said optical element housing is coupled to said rotating member such that said optical element rotates with said rotating member relative to said main housing;

wherein said actuator comprises a motor; and

a differential gear set driven by said motor and coupled to said optical element housing such that said optical element is rotated thereby.

26. The assembly of claim 16, wherein said optical assembly includes a second rotatable optical element, further comprising a second rotation sensor for monitoring rotation of said second optical element and generating a third signal therefor, wherein said processor is connected to said second rotation

sensor for receiving and using the third signal to calculate the orientation of the images relative to the direction of gravity.

27. The assembly of claim 16, further comprising:

an actuator for rotating said optical assembly, wherein said actuator is connected to said processor to receive a signal from said processor indicating the amount to rotate said optical assembly in order to level the images; and

wherein said orientation unit includes a main housing, the second coupling section of said orientation unit includes a rotatable member that rotates relative to said main housing, and said optical assembly is coupled to said rotating member such that said optical assembly rotates with said rotating member relative to said main housing.

28. The assembly of claim 16, further comprising a rotatable image sensor for receiving the images transmitted by said optical assembly, wherein said image sensor is connected to said processor and rotated thereby based on the first and second signals.

29. The assembly of claim 16, wherein said unit further includes a visual indicator that indicates the direction of vertical based on the signal provided by the accelerometer.

30. The assembly of claim 29, wherein said visual indicator comprises an array of diodes, wherein said diodes are individually illuminated to indicate the direction vertical.

31. The assembly of claim 16, wherein said accelerometer senses the inclination of said unit relative to the direction of gravity and communicates a signal therefor to said processor.

32. An endoscopic system, comprising:

 a camera, said camera comprising a main section and a coupling assembly section;

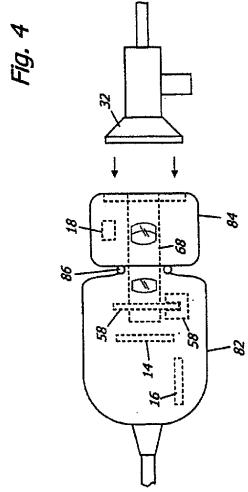
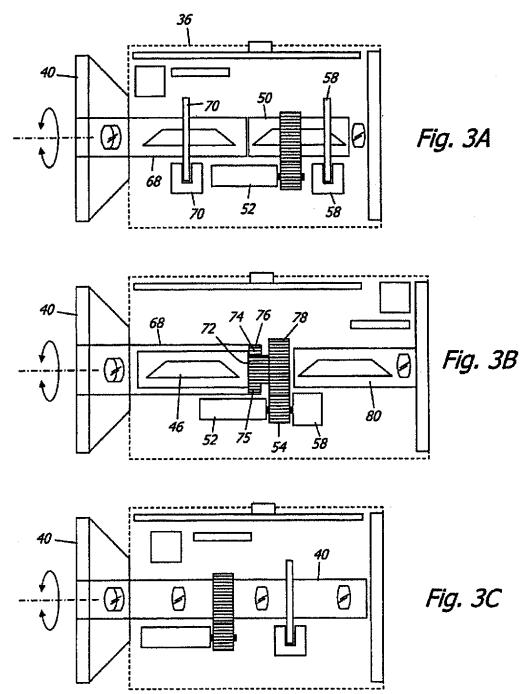
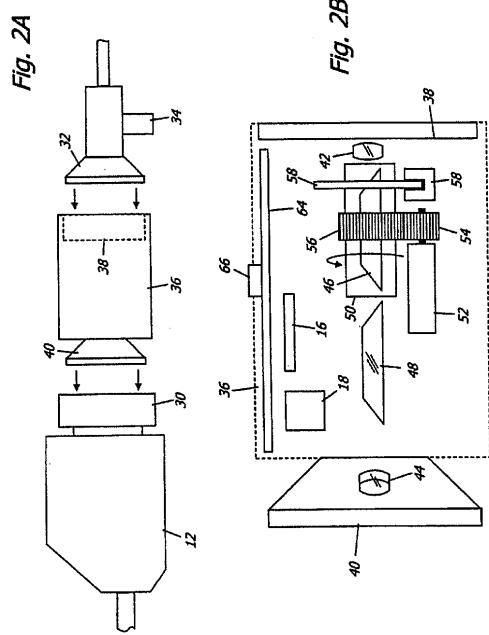
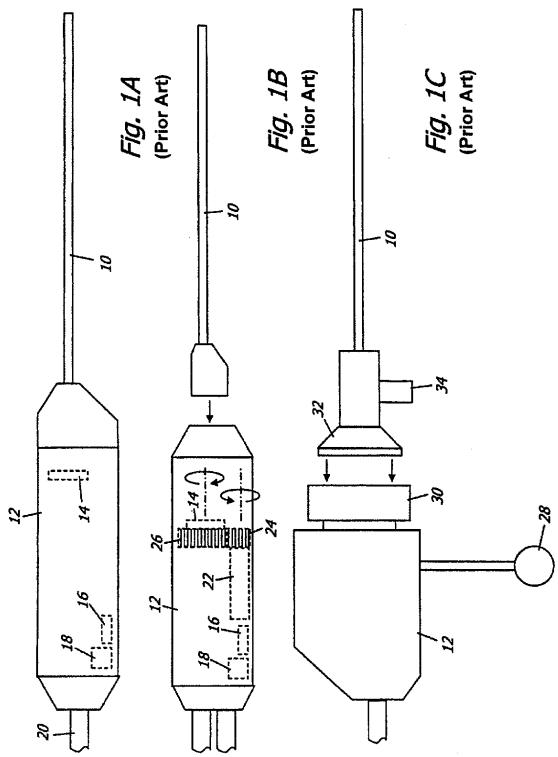
 an optical assembly arranged in said camera for transmitting images therethrough, said optical assembly having at least one optical element;

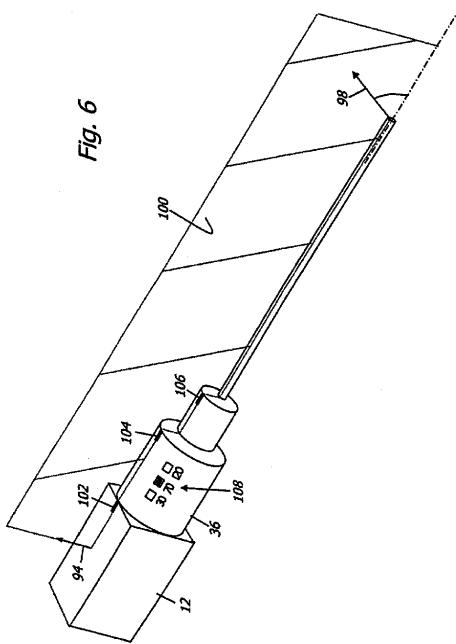
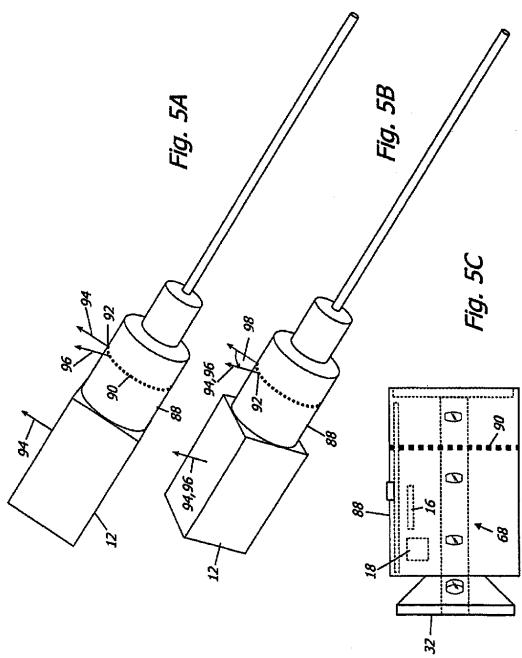
 a rotation sensor arranged in said camera for monitoring rotation of said optical element and generating a first signal therefor;

 an accelerometer arranged in said coupling assembly section for monitoring the rotation of said coupling assembly section and generating a second signal therefor; and

 a processor connected to said rotation sensor and said accelerometer for receiving the first and second signals and, at least partly based on the first

and second signals, calculating the orientation of the images relative to the direction of gravity.

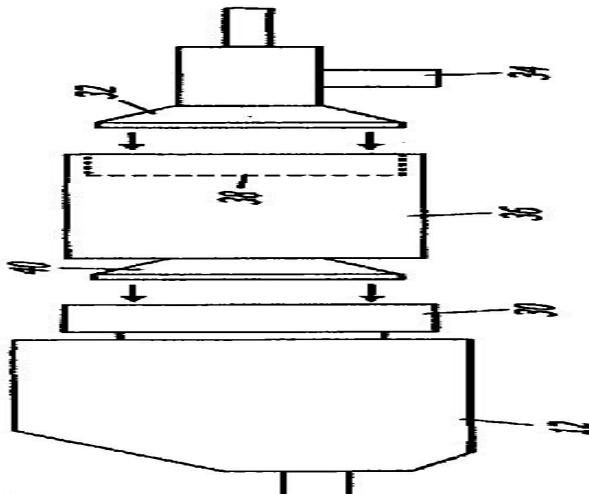




33. The system of claim 33, further comprising an endoscope coupled to the coupling assembly section of said camera.



1 Abstract

A coupling assembly for a scope and an image sensor housing is disclosed generally comprising an image orientation unit having first and second coupling sections for coupling the unit to a scope and an image sensor housing, such as a camera head, an optical assembly with a rotatable optical element for rotating the images, a rotation sensor for monitoring rotation of the optical element, an accelerometer for monitoring rotation of the unit, and a processor for receiving signals from the rotation sensor and the accelerometer and calculating the orientation of the images relative to the direction of gravity. In certain embodiments, the processor causes an actuator to rotate the optical element to level the images. In some embodiments, the processor activates a visual indicator, such as a diode, to indicate the direction of vertical.

2 Representative Drawing

Fig. 2 A



专利名称(译)	具有图像定向功能的连杆组件		
公开(公告)号	JP2006223873A	公开(公告)日	2006-08-31
申请号	JP2006041378	申请日	2006-02-17
[标]申请(专利权)人(译)	卡尔斯巴德东通发展公司		
申请(专利权)人(译)	卡尔Sutotsu开发公司		
[标]发明人	ハンスデイヴィッドホーグ エリックエルヘイル ネイサンジョンスカラ		
发明人	ハンス・デイヴィッド・ホーグ エリック・エル・ヘイル ネイサン・ジョン・スカラ		
IPC分类号	A61B1/04 G02B23/24		
CPC分类号	A61B1/00126 A61B1/00163 G02B23/2423 G02B23/2484 G02B27/642		
FI分类号	A61B1/04.360.E G02B23/24.A A61B1/00.552 A61B1/00.735 A61B1/04.540 A61B1/045.610		
F-TERM分类号	2H040/BA04 2H040/CA26 2H040/DA52 2H040/GA02 2H040/GA11 4C061/GG17 4C061/PP11 4C161/GG17 4C161/PP11		
代理人(译)	渡边 隆 村山彥		
优先权	60/653927 2005-02-17 US 11/355345 2006-02-16 US		
外部链接	Espacenet		

摘要(译)

要解决的问题：提供用于定向由示波器获得的图像的组件，以便可以准确地观察示波器的方向。一种用于连接观察仪器和图像传感器外壳的耦合组件，包括：图像定向单元(36)；光学组件，包括可旋转光学构件；旋转传感器；加速度计；以及控制单元，其连接到旋转传感器和加速度计，并接收第一信号和第二信号，并基于第一信号和第二信号的至少一部分在重力方向上生成图像的图像；以及用于计算方向的处理器。背景技术

